Subgroup ($H$) information
Description: | $A_6.S_5$ |
Order: | \(43200\)\(\medspace = 2^{6} \cdot 3^{3} \cdot 5^{2} \) |
Index: | \(48\)\(\medspace = 2^{4} \cdot 3 \) |
Exponent: | \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \) |
Generators: |
$\langle(3,18)(6,20)(9,19)(11,16), (1,13)(4,15)(7,17)(12,14), (1,15,5,12)(4,17,10,13) \!\cdots\! \rangle$
|
Derived length: | $1$ |
The subgroup is nonabelian and nonsolvable.
Ambient group ($G$) information
Description: | $C_2\times A_6^2.D_4$ |
Order: | \(2073600\)\(\medspace = 2^{10} \cdot 3^{4} \cdot 5^{2} \) |
Exponent: | \(240\)\(\medspace = 2^{4} \cdot 3 \cdot 5 \) |
Derived length: | $2$ |
The ambient group is nonabelian and nonsolvable.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
$\operatorname{Aut}(G)$ | $C_2^2\times A_6^2.D_4.C_2$ |
$\operatorname{Aut}(H)$ | $S_5\times S_6:C_2$, of order \(172800\)\(\medspace = 2^{8} \cdot 3^{3} \cdot 5^{2} \) |
$W$ | $A_6.S_5$, of order \(43200\)\(\medspace = 2^{6} \cdot 3^{3} \cdot 5^{2} \) |
Related subgroups
Other information
Number of subgroups in this autjugacy class | $48$ |
Number of conjugacy classes in this autjugacy class | $2$ |
Möbius function | not computed |
Projective image | $C_2\times A_6^2.D_4$ |