Properties

Label 2073600.z.48.B
Order $ 2^{6} \cdot 3^{3} \cdot 5^{2} $
Index $ 2^{4} \cdot 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$A_6.S_5$
Order: \(43200\)\(\medspace = 2^{6} \cdot 3^{3} \cdot 5^{2} \)
Index: \(48\)\(\medspace = 2^{4} \cdot 3 \)
Exponent: \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \)
Generators: $\langle(3,18)(6,20)(9,19)(11,16), (1,13)(4,15)(7,17)(12,14), (1,15,5,12)(4,17,10,13) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $1$

The subgroup is nonabelian and nonsolvable.

Ambient group ($G$) information

Description: $C_2\times A_6^2.D_4$
Order: \(2073600\)\(\medspace = 2^{10} \cdot 3^{4} \cdot 5^{2} \)
Exponent: \(240\)\(\medspace = 2^{4} \cdot 3 \cdot 5 \)
Derived length:$2$

The ambient group is nonabelian and nonsolvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^2\times A_6^2.D_4.C_2$
$\operatorname{Aut}(H)$ $S_5\times S_6:C_2$, of order \(172800\)\(\medspace = 2^{8} \cdot 3^{3} \cdot 5^{2} \)
$W$$A_6.S_5$, of order \(43200\)\(\medspace = 2^{6} \cdot 3^{3} \cdot 5^{2} \)

Related subgroups

Centralizer:$C_2$
Normalizer:$(C_2\times A_5).A_6.C_2$
Normal closure:$A_6.A_6.C_2^2$
Core:$C_1$
Minimal over-subgroups:$A_6.A_6.C_2$$(C_2\times A_5).A_6.C_2$
Maximal under-subgroups:$A_5\times A_6$$A_6.S_4$$A_6:F_5$$A_5:\PSU(3,2)$$A_6.D_6$$A_5:F_5$$A_5:\SD_{16}$

Other information

Number of subgroups in this autjugacy class$48$
Number of conjugacy classes in this autjugacy class$2$
Möbius function not computed
Projective image$C_2\times A_6^2.D_4$