Properties

Label 2073600.d.480.J
Order $ 2^{5} \cdot 3^{3} \cdot 5 $
Index $ 2^{5} \cdot 3 \cdot 5 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$A_6.D_6$
Order: \(4320\)\(\medspace = 2^{5} \cdot 3^{3} \cdot 5 \)
Index: \(480\)\(\medspace = 2^{5} \cdot 3 \cdot 5 \)
Exponent: \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \)
Generators: $\langle(1,7,2,4)(5,9,8,10)(11,15)(12,14)(16,19), (2,9)(3,4)(5,8)(6,7), (12,17)(13,19)(14,16)(15,20), (11,20,15)(12,14,13)(16,17,19)\rangle$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian and nonsolvable.

Ambient group ($G$) information

Description: $\PGL(2,9)\wr C_2:C_2$
Order: \(2073600\)\(\medspace = 2^{10} \cdot 3^{4} \cdot 5^{2} \)
Exponent: \(240\)\(\medspace = 2^{4} \cdot 3 \cdot 5 \)
Derived length:$2$

The ambient group is nonabelian and nonsolvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$S_6^2.D_4$, of order \(4147200\)\(\medspace = 2^{11} \cdot 3^{4} \cdot 5^{2} \)
$\operatorname{Aut}(H)$ $S_6:D_6$, of order \(8640\)\(\medspace = 2^{6} \cdot 3^{3} \cdot 5 \)
$W$$S_6:D_6$, of order \(8640\)\(\medspace = 2^{6} \cdot 3^{3} \cdot 5 \)

Related subgroups

Centralizer:$C_1$
Normalizer:$S_6:D_6$
Normal closure:$A_6.A_6.C_2^2$
Core:$C_1$
Minimal over-subgroups:$A_6.S_5$$A_6.C_2\times S_4$$A_6.S_3^2$$S_6:D_6$
Maximal under-subgroups:$A_6.C_6$$A_6.S_3$$S_3\times A_6$$A_6.C_2^2$$S_3\times \PSU(3,2)$$S_3\times F_5$$S_3\times \SD_{16}$

Other information

Number of subgroups in this autjugacy class$240$
Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image$\PGL(2,9)\wr C_2:C_2$