Properties

Label 2073600.d.43200.BZ
Order $ 2^{4} \cdot 3 $
Index $ 2^{6} \cdot 3^{3} \cdot 5^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$A_4:C_4$
Order: \(48\)\(\medspace = 2^{4} \cdot 3 \)
Index: \(43200\)\(\medspace = 2^{6} \cdot 3^{3} \cdot 5^{2} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $\langle(1,6)(4,8)(5,10)(7,9), (1,4)(2,3)(5,10)(6,8), (4,8)(5,7)(9,10)(11,13,14,15)(12,17,20,19), (1,4,8)(2,5,7)(3,10,9), (11,14)(12,20)(13,15)(17,19)\rangle$ Copy content Toggle raw display
Derived length: $3$

The subgroup is nonabelian and monomial (hence solvable).

Ambient group ($G$) information

Description: $\PGL(2,9)\wr C_2:C_2$
Order: \(2073600\)\(\medspace = 2^{10} \cdot 3^{4} \cdot 5^{2} \)
Exponent: \(240\)\(\medspace = 2^{4} \cdot 3 \cdot 5 \)
Derived length:$2$

The ambient group is nonabelian and nonsolvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$S_6^2.D_4$, of order \(4147200\)\(\medspace = 2^{11} \cdot 3^{4} \cdot 5^{2} \)
$\operatorname{Aut}(H)$ $C_2\times S_4$, of order \(48\)\(\medspace = 2^{4} \cdot 3 \)
$W$$C_2\times S_4$, of order \(48\)\(\medspace = 2^{4} \cdot 3 \)

Related subgroups

Centralizer:$C_2\times C_4$
Normalizer:$\GL(2,\mathbb{Z}/4):C_2^2$
Normal closure:$A_6.A_6.C_2^2$
Core:$C_1$
Minimal over-subgroups:$(C_3^2\times A_4):C_4$$A_4:F_5$$A_5:C_4$$\GL(2,\mathbb{Z}/4)$$C_2^2.S_4$$\GL(2,\mathbb{Z}/4)$$C_4\times S_4$$A_4:Q_8$$A_4:Q_8$$C_4\times S_4$
Maximal under-subgroups:$C_2\times A_4$$C_2^2:C_4$$C_3:C_4$

Other information

Number of subgroups in this autjugacy class$5400$
Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image$\PGL(2,9)\wr C_2:C_2$