Properties

Label 2073600.d.288.K
Order $ 2^{5} \cdot 3^{2} \cdot 5^{2} $
Index $ 2^{5} \cdot 3^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$A_6:F_5$
Order: \(7200\)\(\medspace = 2^{5} \cdot 3^{2} \cdot 5^{2} \)
Index: \(288\)\(\medspace = 2^{5} \cdot 3^{2} \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Generators: $\langle(1,10,4,8,7)(2,6,3,9,5), (1,8)(2,7)(3,9)(12,19,18,14)(13,16,15,20), (11,14,18,12,19)(13,15,20,17,16), (12,18)(13,15)(14,19)(16,20)\rangle$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian and nonsolvable.

Ambient group ($G$) information

Description: $\PGL(2,9)\wr C_2:C_2$
Order: \(2073600\)\(\medspace = 2^{10} \cdot 3^{4} \cdot 5^{2} \)
Exponent: \(240\)\(\medspace = 2^{4} \cdot 3 \cdot 5 \)
Derived length:$2$

The ambient group is nonabelian and nonsolvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$S_6^2.D_4$, of order \(4147200\)\(\medspace = 2^{11} \cdot 3^{4} \cdot 5^{2} \)
$\operatorname{Aut}(H)$ $F_5\times S_6:C_2$, of order \(28800\)\(\medspace = 2^{7} \cdot 3^{2} \cdot 5^{2} \)
$W$$\PGL(2,9):F_5$, of order \(14400\)\(\medspace = 2^{6} \cdot 3^{2} \cdot 5^{2} \)

Related subgroups

Centralizer:$C_2$
Normalizer:$D_{10}.A_6.C_2^2$
Normal closure:$A_6.A_6.C_2^2$
Core:$C_1$
Minimal over-subgroups:$A_6.A_6.C_2$$D_{10}.S_6$$\PGL(2,9):F_5$$\PGL(2,9):F_5$
Maximal under-subgroups:$D_5\times A_6$$A_6:C_4$$A_5:F_5$$D_5.\SOPlus(4,2)$$F_5\times S_4$

Other information

Number of subgroups in this autjugacy class$72$
Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image$\PGL(2,9)\wr C_2:C_2$