Properties

Label 20736.mi.324.a1
Order $ 2^{6} $
Index $ 2^{2} \cdot 3^{4} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^6$
Order: \(64\)\(\medspace = 2^{6} \)
Index: \(324\)\(\medspace = 2^{2} \cdot 3^{4} \)
Exponent: \(2\)
Generators: $\langle(6,8)(7,11), (3,4)(6,8)(7,11)(10,12), (6,7)(8,11), (1,2)(3,12)(4,10)(5,9)(6,11)(7,8), (1,5)(2,9)(6,11)(7,8), (3,12)(4,10)(6,7)(8,11)\rangle$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is characteristic (hence normal), a semidirect factor, abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), and rational.

Ambient group ($G$) information

Description: $C_2^2:A_4^2:S_3^2$
Order: \(20736\)\(\medspace = 2^{8} \cdot 3^{4} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Derived length:$4$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Quotient group ($Q$) structure

Description: $C_3^2:S_3^2$
Order: \(324\)\(\medspace = 2^{2} \cdot 3^{4} \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Automorphism Group: $S_3\times C_3^2:\GL(2,3)$, of order \(2592\)\(\medspace = 2^{5} \cdot 3^{4} \)
Outer Automorphisms: $S_4$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \)
Nilpotency class: $-1$
Derived length: $3$

The quotient is nonabelian and supersolvable (hence solvable and monomial).

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^6.\He_3.Q_8.S_3^2$
$\operatorname{Aut}(H)$ $\GL(6,2)$, of order \(20158709760\)\(\medspace = 2^{15} \cdot 3^{4} \cdot 5 \cdot 7^{2} \cdot 31 \)
$W$$C_3^2:S_3$, of order \(54\)\(\medspace = 2 \cdot 3^{3} \)

Related subgroups

Centralizer:$D_6\times C_2^5$
Normalizer:$C_2^2:A_4^2:S_3^2$
Complements:$C_3^2:S_3^2$
Minimal over-subgroups:$C_2^5\times C_6$$C_2^4:A_4$$C_2^2\wr C_3$$C_2^4:A_4$$C_2^2\wr C_3$$C_2^7$$C_2^4:D_4$$C_2^4:D_4$
Maximal under-subgroups:$C_2^5$$C_2^5$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function$0$
Projective image$C_2^2:A_4^2:S_3^2$