Properties

Label 20736.hv.2.c1
Order $ 2^{7} \cdot 3^{4} $
Index $ 2 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:not computed
Order: \(10368\)\(\medspace = 2^{7} \cdot 3^{4} \)
Index: \(2\)
Exponent: not computed
Generators: $\langle(4,8)(6,9), (5,7)(6,9)(11,12)(16,17), (10,13)(11,12)(14,15)(16,17), (2,9,6) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: not computed

The subgroup is characteristic (hence normal), maximal, nonabelian, and solvable. Whether it is a direct factor, a semidirect factor, elementary, hyperelementary, monomial, simple, quasisimple, perfect, almost simple, or rational has not been computed.

Ambient group ($G$) information

Description: $(S_3\times D_6^2).S_4$
Order: \(20736\)\(\medspace = 2^{8} \cdot 3^{4} \)
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Derived length:$4$

The ambient group is nonabelian and monomial (hence solvable).

Quotient group ($Q$) structure

Description: $C_2$
Order: \(2\)
Exponent: \(2\)
Automorphism Group: $C_1$, of order $1$
Outer Automorphisms: $C_1$, of order $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, simple, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3^3.C_2^6.C_6.C_2^3$, of order \(82944\)\(\medspace = 2^{10} \cdot 3^{4} \)
$\operatorname{Aut}(H)$ not computed
$\card{W}$\(20736\)\(\medspace = 2^{8} \cdot 3^{4} \)

Related subgroups

Centralizer:$C_1$
Normalizer:$(S_3\times D_6^2).S_4$
Minimal over-subgroups:$(S_3\times D_6^2).S_4$
Maximal under-subgroups:$(C_2\times C_6^3).A_4$$C_3^3.C_2^6.C_2$$C_6^2.C_3:S_4$$(C_3\times C_6^2):S_4$$(C_3\times C_6^2):S_4$$(C_3\times C_6^2):S_4$$C_2^4:S_4$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image$(S_3\times D_6^2).S_4$