Properties

Label 20736.ex.8.a1
Order $ 2^{5} \cdot 3^{4} $
Index $ 2^{3} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:not computed
Order: \(2592\)\(\medspace = 2^{5} \cdot 3^{4} \)
Index: \(8\)\(\medspace = 2^{3} \)
Exponent: not computed
Generators: $\langle(2,6)(3,7)(10,14,13), (1,5)(2,3)(4,8)(6,7), (2,3)(6,7)(10,13,14), (10,14,13) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: not computed

The subgroup is characteristic (hence normal), a semidirect factor, nonabelian, metabelian (hence solvable), and an A-group. Whether it is elementary, hyperelementary, monomial, simple, quasisimple, perfect, almost simple, or rational has not been computed.

Ambient group ($G$) information

Description: $(S_3^2\times A_4^2):C_2^2$
Order: \(20736\)\(\medspace = 2^{8} \cdot 3^{4} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Derived length:$3$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Quotient group ($Q$) structure

Description: $D_4$
Order: \(8\)\(\medspace = 2^{3} \)
Exponent: \(4\)\(\medspace = 2^{2} \)
Automorphism Group: $D_4$, of order \(8\)\(\medspace = 2^{3} \)
Outer Automorphisms: $C_2$, of order \(2\)
Derived length: $2$

The quotient is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), metacyclic (hence metabelian), and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3^2.A_4^2.C_2.C_2^6$
$\operatorname{Aut}(H)$ not computed
$W$$A_4^2:D_4$, of order \(1152\)\(\medspace = 2^{7} \cdot 3^{2} \)

Related subgroups

Centralizer:$C_3\times C_6$
Normalizer:$(S_3^2\times A_4^2):C_2^2$
Complements:$D_4$ $D_4$ $D_4$ $D_4$
Minimal over-subgroups:$C_2\times C_3^2.A_4^2.C_2$$C_2\times (C_3\times A_4^2).C_6$$C_6\times A_4^2:S_3$
Maximal under-subgroups:$C_3^2\times A_4^2$$C_2^5:C_3^3$$C_2^5:C_3^3$$C_6\times A_4^2$$C_6\times A_4^2$$C_6\times A_4^2$$C_6\times A_4^2$$C_2^2:C_6^3$$C_6\times A_4^2$$C_6\times A_4^2$$C_6\times A_4^2$$C_6\times A_4^2$$C_6^3:C_3$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image$(S_3\times A_4)\wr C_2$