Properties

Label 20736.dx.4.D
Order $ 2^{6} \cdot 3^{4} $
Index $ 2^{2} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:not computed
Order: \(5184\)\(\medspace = 2^{6} \cdot 3^{4} \)
Index: \(4\)\(\medspace = 2^{2} \)
Exponent: not computed
Generators: $\langle(12,19,16)(14,15,18), (1,2)(3,5)(4,7)(6,8)(9,11)(12,13,16,17,19,20)(15,18) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: not computed

The subgroup is characteristic (hence normal), nonabelian, and solvable. Whether it is elementary, hyperelementary, monomial, simple, quasisimple, perfect, almost simple, or rational has not been computed.

Ambient group ($G$) information

Description: $(C_2^3\times C_6^3):D_6$
Order: \(20736\)\(\medspace = 2^{8} \cdot 3^{4} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Derived length:$3$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Quotient group ($Q$) structure

Description: $C_2^2$
Order: \(4\)\(\medspace = 2^{2} \)
Exponent: \(2\)
Automorphism Group: $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
Outer Automorphisms: $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
Derived length: $1$

The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), metacyclic, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2\times C_7^3:C_6$, of order \(165888\)\(\medspace = 2^{11} \cdot 3^{4} \)
$\operatorname{Aut}(H)$ not computed
$\card{W}$\(5184\)\(\medspace = 2^{6} \cdot 3^{4} \)

Related subgroups

Centralizer:$C_2^2$
Normalizer:$(C_2^3\times C_6^3):D_6$
Minimal over-subgroups:$C_2^2\times C_2^4.C_3^3:S_3$$C_2\times C_2^4.(S_3\times \He_3:C_2)$$C_2^4.(C_6\times \He_3).C_2^2$
Maximal under-subgroups:$(C_2\times C_6^3).C_6$$C_2^4.C_3^3:S_3$$C_2\times C_6^2:S_4$$C_6^3:D_4$$C_2\times C_6^2:S_4$$C_2\times C_6^2:S_4$$C_6^3:S_3$$C_6^3:S_3$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image not computed