Properties

Label 20736.dx.32.F
Order $ 2^{3} \cdot 3^{4} $
Index $ 2^{5} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_6^3:C_3$
Order: \(648\)\(\medspace = 2^{3} \cdot 3^{4} \)
Index: \(32\)\(\medspace = 2^{5} \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Generators: $\langle(12,19,16)(14,15,18), (1,3,6)(4,5,8)(9,10,11)(12,14,17)(13,16,15)(18,20,19) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, monomial (hence solvable), and metabelian.

Ambient group ($G$) information

Description: $(C_2^3\times C_6^3):D_6$
Order: \(20736\)\(\medspace = 2^{8} \cdot 3^{4} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Derived length:$3$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2\times C_7^3:C_6$, of order \(165888\)\(\medspace = 2^{11} \cdot 3^{4} \)
$\operatorname{Aut}(H)$ $(C_3^2\times C_6^2).S_3^3$
$W$$C_3\times S_4$, of order \(72\)\(\medspace = 2^{3} \cdot 3^{2} \)

Related subgroups

Centralizer:$C_6^2$
Normalizer:$C_3^3:\GL(2,\mathbb{Z}/4)$
Normal closure:$(C_2\times C_6^3).C_6$
Core:$C_3^2\times C_6$
Minimal over-subgroups:$(C_2\times C_6^3).C_6$$C_6^3:C_6$$C_6^3:S_3$$C_6^3.S_3$

Other information

Number of subgroups in this autjugacy class$8$
Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image not computed