Properties

Label 20736.dx.3.A
Order $ 2^{8} \cdot 3^{3} $
Index $ 3 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$(C_2^4\times C_6^2):D_6$
Order: \(6912\)\(\medspace = 2^{8} \cdot 3^{3} \)
Index: \(3\)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $\langle(2,5)(4,8), (1,3,6)(4,5,8)(9,10,11)(12,14,17)(13,16,15)(18,20,19), (21,23) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $3$

The subgroup is characteristic (hence normal), maximal, a semidirect factor, nonabelian, and monomial (hence solvable).

Ambient group ($G$) information

Description: $(C_2^3\times C_6^3):D_6$
Order: \(20736\)\(\medspace = 2^{8} \cdot 3^{4} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Derived length:$3$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Quotient group ($Q$) structure

Description: $C_3$
Order: \(3\)
Exponent: \(3\)
Automorphism Group: $C_2$, of order \(2\)
Outer Automorphisms: $C_2$, of order \(2\)
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, and simple.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2\times C_7^3:C_6$, of order \(165888\)\(\medspace = 2^{11} \cdot 3^{4} \)
$\operatorname{Aut}(H)$ $C_2\times (C_2^3\times C_6).C_3^3.C_2^6$
$W$$C_7^3:C_6$, of order \(2058\)\(\medspace = 2 \cdot 3 \cdot 7^{3} \)

Related subgroups

Centralizer:$C_2$
Normalizer:$(C_2^3\times C_6^3):D_6$
Complements:$C_3$ $C_3$ $C_3$ $C_3$
Minimal over-subgroups:$(C_2^3\times C_6^3):D_6$
Maximal under-subgroups:$(C_2^4\times C_6^2):C_6$$C_6^2:\GL(2,\mathbb{Z}/4)$$C_2^2\times C_2^4.C_3^3:C_2$$C_2\times (C_2^2\times C_6^2).D_6$$C_2^4.(C_6\times S_3):S_3$$(C_2^2\times C_6^2).D_{12}$$C_6^2.(C_4\times S_4)$$C_2^4.C_6^2.C_2^2$$C_6^2.D_4^2$$C_2^6:S_3^2$$C_6^2:(C_2\times S_4)$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image$C_7^3:C_6$