Properties

Label 20736.dx.12.X
Order $ 2^{6} \cdot 3^{3} $
Index $ 2^{2} \cdot 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_6^3:D_4$
Order: \(1728\)\(\medspace = 2^{6} \cdot 3^{3} \)
Index: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $\langle(12,19,16)(14,15,18), (21,24)(22,23), (9,11,10), (21,23)(22,24), (1,6)(3,7) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Ambient group ($G$) information

Description: $(C_2^3\times C_6^3):D_6$
Order: \(20736\)\(\medspace = 2^{8} \cdot 3^{4} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Derived length:$3$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2\times C_7^3:C_6$, of order \(165888\)\(\medspace = 2^{11} \cdot 3^{4} \)
$\operatorname{Aut}(H)$ $\ASL(2,3).C_2^5.C_2^5.C_2^3.\PSL(2,7)$
$W$$D_6:D_6$, of order \(144\)\(\medspace = 2^{4} \cdot 3^{2} \)

Related subgroups

Centralizer: not computed
Normalizer:$(C_2\times C_6^3).C_2^4$
Normal closure:$C_2^2\times C_2^4.C_3^3:S_3$
Core:$C_2\times C_6^3$
Minimal over-subgroups:$C_6^3.C_2^4$$(C_2\times C_6^3).C_2^3$$C_6^3.C_2^4$
Maximal under-subgroups:$C_6^3:C_2^2$$C_6^3:C_4$$C_6^3:C_2^2$$C_2^2\times C_6^3$$C_6^3:C_2^2$$C_6^3:C_2^2$$C_6^3:C_2^2$$C_6^3:C_2^2$$C_6^3:C_2^2$$C_6^3:C_2^2$$C_6^3:C_2^2$$C_6^3:C_2^2$$C_6^3:C_2^2$$C_6^3:C_2^2$$C_6^3:C_2^2$$C_6^2:C_2^4$$C_6^2:C_2^4$$C_6^2:C_2^4$$C_6^2:C_2^4$

Other information

Number of subgroups in this autjugacy class$3$
Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image not computed