Subgroup ($H$) information
| Description: | $C_2^4$ |
| Order: | \(16\)\(\medspace = 2^{4} \) |
| Index: | \(1296\)\(\medspace = 2^{4} \cdot 3^{4} \) |
| Exponent: | \(2\) |
| Generators: |
$\langle(1,2)(4,6)(7,9)(11,12), (4,6)(11,12), (7,9)(8,10), (3,5)(4,6)\rangle$
|
| Nilpotency class: | $1$ |
| Derived length: | $1$ |
The subgroup is characteristic (hence normal), a semidirect factor, abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), and rational.
Ambient group ($G$) information
| Description: | $(C_2^3\times C_6^3):D_6$ |
| Order: | \(20736\)\(\medspace = 2^{8} \cdot 3^{4} \) |
| Exponent: | \(36\)\(\medspace = 2^{2} \cdot 3^{2} \) |
| Derived length: | $3$ |
The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.
Quotient group ($Q$) structure
| Description: | $C_3\wr S_3\times D_4$ |
| Order: | \(1296\)\(\medspace = 2^{4} \cdot 3^{4} \) |
| Exponent: | \(36\)\(\medspace = 2^{2} \cdot 3^{2} \) |
| Automorphism Group: | $(C_6\times \He_3).C_2^5$ |
| Outer Automorphisms: | $C_2^2\times C_6$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \) |
| Nilpotency class: | $-1$ |
| Derived length: | $3$ |
The quotient is nonabelian and supersolvable (hence solvable and monomial).
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_6\times C_2^4:\He_3.C_2^5$ |
| $\operatorname{Aut}(H)$ | $A_8$, of order \(20160\)\(\medspace = 2^{6} \cdot 3^{2} \cdot 5 \cdot 7 \) |
| $W$ | $D_6$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \) |
Related subgroups
| Centralizer: | $C_2^3\times C_6^3$ | |
| Normalizer: | $(C_2^3\times C_6^3):D_6$ | |
| Complements: | $C_3\wr S_3\times D_4$ | |
| Minimal over-subgroups: | $C_2^3\times C_6$ | $C_2^5$ |
Other information
| Number of conjugacy classes in this autjugacy class | $1$ |
| Möbius function | not computed |
| Projective image | $(C_2^3\times C_6^3):D_6$ |