Properties

Label 20736.bl.5184.A
Order $ 2^{2} $
Index $ 2^{6} \cdot 3^{4} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^2$
Order: \(4\)\(\medspace = 2^{2} \)
Index: \(5184\)\(\medspace = 2^{6} \cdot 3^{4} \)
Exponent: \(2\)
Generators: $\langle(13,14)(15,17)(16,18)(19,20), (13,17)(14,15)(16,20)(18,19)\rangle$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is characteristic (hence normal), abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), metacyclic, and rational.

Ambient group ($G$) information

Description: $C_6^3:S_3.C_2^4$
Order: \(20736\)\(\medspace = 2^{8} \cdot 3^{4} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Derived length:$3$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Quotient group ($Q$) structure

Description: $C_3^4:C_4^2:C_2^2$
Order: \(5184\)\(\medspace = 2^{6} \cdot 3^{4} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Automorphism Group: $C_3^4.C_2^3.C_2^5.C_2^4$
Outer Automorphisms: $C_2\wr D_4$, of order \(128\)\(\medspace = 2^{7} \)
Nilpotency class: $-1$
Derived length: $3$

The quotient is nonabelian and solvable. Whether it is monomial has not been computed.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$S_3\times S_4^2$, of order \(2654208\)\(\medspace = 2^{15} \cdot 3^{4} \)
$\operatorname{Aut}(H)$ $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
$W$$C_2$, of order \(2\)

Related subgroups

Centralizer:$C_3^4.C_2^5.C_2^2$
Normalizer:$C_6^3:S_3.C_2^4$
Minimal over-subgroups:$C_2\times C_6$$C_2\times C_6$$C_2\times C_6$$C_2\times C_6$$C_2\times C_6$$C_2^3$$C_2^3$$C_2^3$$C_2^3$$C_2^3$$C_2^3$$C_2^3$$C_2\times C_4$
Maximal under-subgroups:$C_2$$C_2$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function$0$
Projective image not computed