Properties

Label 2063912140800000000.d.768._.A
Order $ 2^{20} \cdot 3^{8} \cdot 5^{8} $
Index $ 2^{8} \cdot 3 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:not computed
Order: \(2687385600000000\)\(\medspace = 2^{20} \cdot 3^{8} \cdot 5^{8} \)
Index: \(768\)\(\medspace = 2^{8} \cdot 3 \)
Exponent: not computed
Generators: $\langle(2,4)(3,5)(6,8,9,7)(12,13,15,14)(16,19,18,17,20)(22,25)(23,24)(27,28,29,30) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: not computed

The subgroup is characteristic (hence normal), nonabelian, and nonsolvable. Whether it is a direct factor, a semidirect factor, elementary, hyperelementary, monomial, simple, quasisimple, perfect, almost simple, or rational has not been computed.

Ambient group ($G$) information

Description: $A_5^8.C_2^4.C_2^5.A_4.C_2$
Order: \(2063912140800000000\)\(\medspace = 2^{28} \cdot 3^{9} \cdot 5^{8} \)
Exponent: \(720\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 5 \)
Derived length:$3$

The ambient group is nonabelian and nonsolvable. Whether it is rational has not been computed.

Quotient group ($Q$) structure

Description: $C_2^6:A_4$
Order: \(768\)\(\medspace = 2^{8} \cdot 3 \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Automorphism Group: $C_2^8.A_4.D_6$
Outer Automorphisms: $C_2\times S_4$, of order \(48\)\(\medspace = 2^{4} \cdot 3 \)
Derived length: $2$

The quotient is nonabelian, monomial (hence solvable), and metabelian.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$Group of order \(8255648563200000000\)\(\medspace = 2^{30} \cdot 3^{9} \cdot 5^{8} \)
$\operatorname{Aut}(H)$ not computed
$\card{W}$ not computed

Related subgroups

Centralizer: not computed
Normalizer: not computed
Autjugate subgroups: Subgroups are not computed up to automorphism.

Other information

Möbius function not computed
Projective image not computed