Properties

Label 20480.la.1280.A
Order $ 2^{4} $
Index $ 2^{8} \cdot 5 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^4$
Order: \(16\)\(\medspace = 2^{4} \)
Index: \(1280\)\(\medspace = 2^{8} \cdot 5 \)
Exponent: \(2\)
Generators: $\langle(3,8)(5,16)(13,19)(14,18), (1,4)(2,9)(13,19)(14,18), (7,15)(11,20)(13,19)(14,18), (6,12)(7,15)(10,17)(11,20)\rangle$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is characteristic (hence normal), abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), and rational. Whether it is a direct factor or a semidirect factor has not been computed.

Ambient group ($G$) information

Description: $C_2^6.C_2\wr D_5$
Order: \(20480\)\(\medspace = 2^{12} \cdot 5 \)
Exponent: \(40\)\(\medspace = 2^{3} \cdot 5 \)
Derived length:$4$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Quotient group ($Q$) structure

Description: $C_2^6:D_{10}$
Order: \(1280\)\(\medspace = 2^{8} \cdot 5 \)
Exponent: \(20\)\(\medspace = 2^{2} \cdot 5 \)
Automorphism Group: $F_{16}.C_2^4.C_2^3$
Outer Automorphisms: $D_4:D_6$, of order \(96\)\(\medspace = 2^{5} \cdot 3 \)
Nilpotency class: $-1$
Derived length: $3$

The quotient is nonabelian and monomial (hence solvable).

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$D_5\times C_5^2:D_6$, of order \(327680\)\(\medspace = 2^{16} \cdot 5 \)
$\operatorname{Aut}(H)$ $A_8$, of order \(20160\)\(\medspace = 2^{6} \cdot 3^{2} \cdot 5 \cdot 7 \)
$W$$D_5$, of order \(10\)\(\medspace = 2 \cdot 5 \)

Related subgroups

Centralizer:$C_2^6.C_2^5$
Normalizer:$C_2^6.C_2\wr D_5$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image$C_2^6.C_2\wr D_5$