Properties

Label 2048.crx.8._.GH
Order $ 2^{8} $
Index $ 2^{3} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$(C_4\times C_8).D_4$
Order: \(256\)\(\medspace = 2^{8} \)
Index: \(8\)\(\medspace = 2^{3} \)
Exponent: \(8\)\(\medspace = 2^{3} \)
Generators: $af, bg, cefg$ Copy content Toggle raw display
Nilpotency class: $5$
Derived length: $3$

The subgroup is normal, nonabelian, and a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary). Whether it is a direct factor or a semidirect factor has not been computed.

Ambient group ($G$) information

Description: $D_4^2.C_2^5$
Order: \(2048\)\(\medspace = 2^{11} \)
Exponent: \(8\)\(\medspace = 2^{3} \)
Nilpotency class:$5$
Derived length:$3$

The ambient group is nonabelian and a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary).

Quotient group ($Q$) structure

Description: $C_2^3$
Order: \(8\)\(\medspace = 2^{3} \)
Exponent: \(2\)
Automorphism Group: $\PSL(2,7)$, of order \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \)
Outer Automorphisms: $\PSL(2,7)$, of order \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \)
Nilpotency class: $1$
Derived length: $1$

The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), and rational.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_2^6\times C_4^2).C_2^6.C_2^6$
$\operatorname{Aut}(H)$ $D_4^2.C_2^4$, of order \(1024\)\(\medspace = 2^{10} \)
$\card{W}$ not computed

Related subgroups

Centralizer: not computed
Normalizer: not computed
Autjugate subgroups: Subgroups are not computed up to automorphism.

Other information

Möbius function not computed
Projective image not computed