Properties

Label 2048.cle.8.l1.a1
Order $ 2^{8} $
Index $ 2^{3} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_8.D_{16}$
Order: \(256\)\(\medspace = 2^{8} \)
Index: \(8\)\(\medspace = 2^{3} \)
Exponent: \(32\)\(\medspace = 2^{5} \)
Generators: $\left(\begin{array}{rr} 240 & 0 \\ 0 & 223 \end{array}\right), \left(\begin{array}{rr} 16 & 0 \\ 0 & 241 \end{array}\right), \left(\begin{array}{rr} 0 & 9 \\ 200 & 0 \end{array}\right), \left(\begin{array}{rr} 253 & 0 \\ 0 & 64 \end{array}\right), \left(\begin{array}{rr} 1 & 0 \\ 0 & 256 \end{array}\right), \left(\begin{array}{rr} 32 & 0 \\ 0 & 249 \end{array}\right), \left(\begin{array}{rr} 1 & 0 \\ 0 & 241 \end{array}\right), \left(\begin{array}{rr} 256 & 0 \\ 0 & 256 \end{array}\right)$ Copy content Toggle raw display
Nilpotency class: $5$
Derived length: $2$

The subgroup is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), and metabelian.

Ambient group ($G$) information

Description: $D_{128}:C_8$
Order: \(2048\)\(\medspace = 2^{11} \)
Exponent: \(128\)\(\medspace = 2^{7} \)
Nilpotency class:$7$
Derived length:$2$

The ambient group is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{64}.C_8.C_2^3.C_2^4$
$\operatorname{Aut}(H)$ $(C_4\times C_8).C_2^5$
$\card{\operatorname{res}(S)}$\(1024\)\(\medspace = 2^{10} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(8\)\(\medspace = 2^{3} \)
$W$$D_{16}$, of order \(32\)\(\medspace = 2^{5} \)

Related subgroups

Centralizer:$C_{16}$
Normalizer:$D_{32}:C_8$
Normal closure:$D_{64}:C_8$
Core:$C_4\times C_{32}$
Minimal over-subgroups:$D_{32}:C_8$
Maximal under-subgroups:$C_4\times C_{32}$$D_{16}:C_4$$C_{16}.C_8$
Autjugate subgroups:2048.cle.8.l1.b1

Other information

Number of subgroups in this conjugacy class$4$
Möbius function$0$
Projective image$C_2\times D_{64}$