Properties

Label 2048.cle.8.j1.a1
Order $ 2^{8} $
Index $ 2^{3} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$Q_{256}$
Order: \(256\)\(\medspace = 2^{8} \)
Index: \(8\)\(\medspace = 2^{3} \)
Exponent: \(128\)\(\medspace = 2^{7} \)
Generators: $\left(\begin{array}{rr} 165 & 0 \\ 0 & 81 \end{array}\right), \left(\begin{array}{rr} 16 & 0 \\ 0 & 241 \end{array}\right), \left(\begin{array}{rr} 253 & 0 \\ 0 & 64 \end{array}\right), \left(\begin{array}{rr} 9 & 0 \\ 0 & 200 \end{array}\right), \left(\begin{array}{rr} 0 & 256 \\ 1 & 0 \end{array}\right), \left(\begin{array}{rr} 32 & 0 \\ 0 & 249 \end{array}\right), \left(\begin{array}{rr} 256 & 0 \\ 0 & 256 \end{array}\right), \left(\begin{array}{rr} 240 & 0 \\ 0 & 136 \end{array}\right)$ Copy content Toggle raw display
Nilpotency class: $7$
Derived length: $2$

The subgroup is characteristic (hence normal), a semidirect factor, nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), and metacyclic (hence metabelian).

Ambient group ($G$) information

Description: $D_{128}:C_8$
Order: \(2048\)\(\medspace = 2^{11} \)
Exponent: \(128\)\(\medspace = 2^{7} \)
Nilpotency class:$7$
Derived length:$2$

The ambient group is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), and metabelian.

Quotient group ($Q$) structure

Description: $C_8$
Order: \(8\)\(\medspace = 2^{3} \)
Exponent: \(8\)\(\medspace = 2^{3} \)
Automorphism Group: $C_2^2$, of order \(4\)\(\medspace = 2^{2} \)
Outer Automorphisms: $C_2^2$, of order \(4\)\(\medspace = 2^{2} \)
Nilpotency class: $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group) and a $p$-group.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{64}.C_8.C_2^3.C_2^4$
$\operatorname{Aut}(H)$ $C_{64}.C_{32}.C_2^2$
$\card{\operatorname{res}(\operatorname{Aut}(G))}$\(8192\)\(\medspace = 2^{13} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(8\)\(\medspace = 2^{3} \)
$W$$D_{64}$, of order \(128\)\(\medspace = 2^{7} \)

Related subgroups

Centralizer:$C_{16}$
Normalizer:$D_{128}:C_8$
Complements:$C_8$ $C_8$ $C_8$ $C_8$
Minimal over-subgroups:$D_{128}:C_2$
Maximal under-subgroups:$Q_{128}$$Q_{128}$$C_{128}$

Other information

Möbius function$0$
Projective image not computed