Properties

Label 2048.cle.4.a1.a1
Order $ 2^{9} $
Index $ 2^{2} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$D_{64}:C_4$
Order: \(512\)\(\medspace = 2^{9} \)
Index: \(4\)\(\medspace = 2^{2} \)
Exponent: \(64\)\(\medspace = 2^{6} \)
Generators: $\left(\begin{array}{rr} 165 & 0 \\ 0 & 81 \end{array}\right), \left(\begin{array}{rr} 253 & 0 \\ 0 & 64 \end{array}\right), \left(\begin{array}{rr} 1 & 0 \\ 0 & 256 \end{array}\right), \left(\begin{array}{rr} 0 & 9 \\ 200 & 0 \end{array}\right), \left(\begin{array}{rr} 32 & 0 \\ 0 & 249 \end{array}\right), \left(\begin{array}{rr} 240 & 0 \\ 0 & 136 \end{array}\right), \left(\begin{array}{rr} 16 & 0 \\ 0 & 241 \end{array}\right), \left(\begin{array}{rr} 1 & 0 \\ 0 & 241 \end{array}\right), \left(\begin{array}{rr} 256 & 0 \\ 0 & 256 \end{array}\right)$ Copy content Toggle raw display
Nilpotency class: $6$
Derived length: $2$

The subgroup is normal, nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), and metabelian.

Ambient group ($G$) information

Description: $D_{128}:C_8$
Order: \(2048\)\(\medspace = 2^{11} \)
Exponent: \(128\)\(\medspace = 2^{7} \)
Nilpotency class:$7$
Derived length:$2$

The ambient group is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), and metabelian.

Quotient group ($Q$) structure

Description: $C_2^2$
Order: \(4\)\(\medspace = 2^{2} \)
Exponent: \(2\)
Automorphism Group: $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
Outer Automorphisms: $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
Nilpotency class: $1$
Derived length: $1$

The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), metacyclic, and rational.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{64}.C_8.C_2^3.C_2^4$
$\operatorname{Aut}(H)$ $C_2^2\times C_{32}.C_8.C_2^3$
$\card{\operatorname{res}(S)}$\(8192\)\(\medspace = 2^{13} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(4\)\(\medspace = 2^{2} \)
$W$$D_{64}$, of order \(128\)\(\medspace = 2^{7} \)

Related subgroups

Centralizer:$C_{16}$
Normalizer:$D_{128}:C_8$
Minimal over-subgroups:$D_{64}:C_8$$C_8.D_{64}$$D_{128}:C_4$
Maximal under-subgroups:$D_{64}:C_2$$C_4\times C_{64}$$C_{64}.C_4$$D_{32}:C_4$$C_4.D_{32}$
Autjugate subgroups:2048.cle.4.a1.b1

Other information

Möbius function$2$
Projective image$C_2\times D_{64}$