Properties

Label 2048.bys.256.ba1
Order $ 2^{3} $
Index $ 2^{8} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2\times C_4$
Order: \(8\)\(\medspace = 2^{3} \)
Index: \(256\)\(\medspace = 2^{8} \)
Exponent: \(4\)\(\medspace = 2^{2} \)
Generators: $\left(\begin{array}{rr} 7 & 0 \\ 24 & 23 \end{array}\right), \left(\begin{array}{rr} 23 & 16 \\ 8 & 7 \end{array}\right)$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is characteristic (hence normal), abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), and metacyclic.

Ambient group ($G$) information

Description: $(C_4\times C_8).D_4^2$
Order: \(2048\)\(\medspace = 2^{11} \)
Exponent: \(16\)\(\medspace = 2^{4} \)
Nilpotency class:$3$
Derived length:$2$

The ambient group is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), and metabelian.

Quotient group ($Q$) structure

Description: $D_4:(C_2\times C_{16})$
Order: \(256\)\(\medspace = 2^{8} \)
Exponent: \(16\)\(\medspace = 2^{4} \)
Automorphism Group: $C_2^6.C_2^5.C_2^3$
Outer Automorphisms: $(C_2\times D_4).C_2^6$
Nilpotency class: $2$
Derived length: $2$

The quotient is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), and metabelian.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_2^8\times C_4^2).C_2^6.C_2^5$
$\operatorname{Aut}(H)$ $D_4$, of order \(8\)\(\medspace = 2^{3} \)
$\card{W}$\(4\)\(\medspace = 2^{2} \)

Related subgroups

Centralizer:$C_2\times C_4\times C_8^2$
Normalizer:$(C_4\times C_8).D_4^2$
Minimal over-subgroups:$C_2^2\times C_4$$C_2^2\times C_4$$C_2^2\times C_4$$C_2\times D_4$$C_4^2$
Maximal under-subgroups:$C_2^2$$C_4$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image not computed