Properties

Label 2048.bky.256.BL
Order $ 2^{3} $
Index $ 2^{8} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^3$
Order: \(8\)\(\medspace = 2^{3} \)
Index: \(256\)\(\medspace = 2^{8} \)
Exponent: \(2\)
Generators: $\left(\begin{array}{rr} 31 & 0 \\ 16 & 15 \end{array}\right), \left(\begin{array}{rr} 31 & 0 \\ 0 & 31 \end{array}\right), \left(\begin{array}{rr} 1 & 16 \\ 0 & 1 \end{array}\right)$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), and rational.

Ambient group ($G$) information

Description: $C_8^2.C_2^5$
Order: \(2048\)\(\medspace = 2^{11} \)
Exponent: \(16\)\(\medspace = 2^{4} \)
Nilpotency class:$2$
Derived length:$2$

The ambient group is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$Group of order \(67108864\)\(\medspace = 2^{26} \)
$\operatorname{Aut}(H)$ $\PSL(2,7)$, of order \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \)
$\operatorname{res}(S)$$D_4$, of order \(8\)\(\medspace = 2^{3} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(1048576\)\(\medspace = 2^{20} \)
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$C_2^3\times C_8\times C_{16}$
Normalizer:$C_2^3\times C_8\times C_{16}$
Normal closure:$C_2^4$
Core:$C_2^2$
Minimal over-subgroups:$C_2^4$$C_2^2\times C_4$$C_2^2\times C_4$$C_2^4$
Maximal under-subgroups:$C_2^2$$C_2^2$$C_2^2$

Other information

Number of subgroups in this autjugacy class$8$
Number of conjugacy classes in this autjugacy class$4$
Möbius function$0$
Projective image$C_8^2.C_2^3$