Subgroup ($H$) information
| Description: | $C_2^2\times C_4$ |
| Order: | \(16\)\(\medspace = 2^{4} \) |
| Index: | \(128\)\(\medspace = 2^{7} \) |
| Exponent: | \(4\)\(\medspace = 2^{2} \) |
| Generators: |
$\left(\begin{array}{rr}
31 & 0 \\
0 & 31
\end{array}\right), \left(\begin{array}{rr}
17 & 8 \\
0 & 17
\end{array}\right), \left(\begin{array}{rr}
17 & 16 \\
0 & 17
\end{array}\right)$
|
| Nilpotency class: | $1$ |
| Derived length: | $1$ |
The subgroup is characteristic (hence normal), abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), and a $p$-group (hence elementary and hyperelementary).
Ambient group ($G$) information
| Description: | $C_8^2.C_2^5$ |
| Order: | \(2048\)\(\medspace = 2^{11} \) |
| Exponent: | \(16\)\(\medspace = 2^{4} \) |
| Nilpotency class: | $2$ |
| Derived length: | $2$ |
The ambient group is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), and metabelian.
Quotient group ($Q$) structure
| Description: | $C_2^2\times C_4\times C_8$ |
| Order: | \(128\)\(\medspace = 2^{7} \) |
| Exponent: | \(8\)\(\medspace = 2^{3} \) |
| Automorphism Group: | $C_2^8.C_2\wr D_6$, of order \(196608\)\(\medspace = 2^{16} \cdot 3 \) |
| Outer Automorphisms: | $C_2^8.C_2\wr D_6$, of order \(196608\)\(\medspace = 2^{16} \cdot 3 \) |
| Nilpotency class: | $1$ |
| Derived length: | $1$ |
The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group) and a $p$-group (hence elementary and hyperelementary).
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
| $\operatorname{Aut}(G)$ | Group of order \(67108864\)\(\medspace = 2^{26} \) |
| $\operatorname{Aut}(H)$ | $C_2^3:S_4$, of order \(192\)\(\medspace = 2^{6} \cdot 3 \) |
| $\operatorname{res}(\operatorname{Aut}(G))$ | $C_2\wr C_2^2$, of order \(64\)\(\medspace = 2^{6} \) |
| $\card{\operatorname{ker}(\operatorname{res})}$ | \(1048576\)\(\medspace = 2^{20} \) |
| $W$ | $C_2$, of order \(2\) |
Related subgroups
Other information
| Number of conjugacy classes in this autjugacy class | $1$ |
| Möbius function | $0$ |
| Projective image | $C_2^3\times C_4\times C_8$ |