Properties

Label 20250.f.90.r1
Order $ 3^{2} \cdot 5^{2} $
Index $ 2 \cdot 3^{2} \cdot 5 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{15}^2$
Order: \(225\)\(\medspace = 3^{2} \cdot 5^{2} \)
Index: \(90\)\(\medspace = 2 \cdot 3^{2} \cdot 5 \)
Exponent: \(15\)\(\medspace = 3 \cdot 5 \)
Generators: $a^{20}c^{10}, a^{6}d^{6}, c^{3}, d^{10}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group) and metacyclic.

Ambient group ($G$) information

Description: $C_{15}\wr S_3$
Order: \(20250\)\(\medspace = 2 \cdot 3^{4} \cdot 5^{3} \)
Exponent: \(90\)\(\medspace = 2 \cdot 3^{2} \cdot 5 \)
Derived length:$3$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{15}^2.C_6^2.C_2^4$
$\operatorname{Aut}(H)$ $\GL(2,3)\times \GL(2,5)$, of order \(23040\)\(\medspace = 2^{9} \cdot 3^{2} \cdot 5 \)
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$C_{15}^3$
Normalizer:$C_{15}^3$
Normal closure:$C_{15}^3$
Core:$C_5$
Minimal over-subgroups:$C_5\times C_{15}^2$$C_3\times C_{15}^2$
Maximal under-subgroups:$C_5\times C_{15}$$C_5\times C_{15}$$C_5\times C_{15}$$C_3\times C_{15}$$C_3\times C_{15}$$C_3\times C_{15}$

Other information

Number of subgroups in this autjugacy class$18$
Number of conjugacy classes in this autjugacy class$3$
Möbius function$0$
Projective image$(C_3\times C_{15}^2):S_3$