Properties

Label 20250.f.27.c1
Order $ 2 \cdot 3 \cdot 5^{3} $
Index $ 3^{3} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_5^2\times D_{15}$
Order: \(750\)\(\medspace = 2 \cdot 3 \cdot 5^{3} \)
Index: \(27\)\(\medspace = 3^{3} \)
Exponent: \(30\)\(\medspace = 2 \cdot 3 \cdot 5 \)
Generators: $a^{15}, d^{3}, c^{5}d^{10}, a^{6}, c^{3}d^{12}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.

Ambient group ($G$) information

Description: $C_{15}\wr S_3$
Order: \(20250\)\(\medspace = 2 \cdot 3^{4} \cdot 5^{3} \)
Exponent: \(90\)\(\medspace = 2 \cdot 3^{2} \cdot 5 \)
Derived length:$3$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{15}^2.C_6^2.C_2^4$
$\operatorname{Aut}(H)$ $S_3\times \GL(2,5)\times F_5$
$W$$D_{15}$, of order \(30\)\(\medspace = 2 \cdot 3 \cdot 5 \)

Related subgroups

Centralizer:$C_{15}^2$
Normalizer:$C_3\times C_{15}\times C_5\times D_{15}$
Normal closure:$C_5\times C_{15}^2:S_3$
Core:$C_5^3$
Minimal over-subgroups:$C_{15}\times C_5\times D_{15}$$C_{15}\times C_5\times D_{15}$
Maximal under-subgroups:$C_5^2\times C_{15}$$D_5\times C_5^2$$S_3\times C_5^2$$C_5\times D_{15}$$C_5\times D_{15}$$C_5\times D_{15}$

Other information

Number of subgroups in this autjugacy class$3$
Number of conjugacy classes in this autjugacy class$1$
Möbius function$0$
Projective image$(C_3\times C_{15}^2):S_3$