Properties

Label 20250.f.1350.s1
Order $ 3 \cdot 5 $
Index $ 2 \cdot 3^{3} \cdot 5^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{15}$
Order: \(15\)\(\medspace = 3 \cdot 5 \)
Index: \(1350\)\(\medspace = 2 \cdot 3^{3} \cdot 5^{2} \)
Exponent: \(15\)\(\medspace = 3 \cdot 5 \)
Generators: $d^{10}, a^{6}c^{12}d^{6}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 3,5$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).

Ambient group ($G$) information

Description: $C_{15}\wr S_3$
Order: \(20250\)\(\medspace = 2 \cdot 3^{4} \cdot 5^{3} \)
Exponent: \(90\)\(\medspace = 2 \cdot 3^{2} \cdot 5 \)
Derived length:$3$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{15}^2.C_6^2.C_2^4$
$\operatorname{Aut}(H)$ $C_2\times C_4$, of order \(8\)\(\medspace = 2^{3} \)
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$C_{15}^3$
Normalizer:$C_{15}^3$
Normal closure:$C_5\times C_{15}^2$
Core:$C_1$
Minimal over-subgroups:$C_5\times C_{15}$$C_5\times C_{15}$$C_5\times C_{15}$$C_5\times C_{15}$$C_5\times C_{15}$$C_3\times C_{15}$$C_3\times C_{15}$
Maximal under-subgroups:$C_5$$C_3$

Other information

Number of subgroups in this autjugacy class$24$
Number of conjugacy classes in this autjugacy class$4$
Möbius function$0$
Projective image$C_{15}\wr S_3$