Properties

Label 2023.a.119.a1.d1
Order $ 17 $
Index $ 7 \cdot 17 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{17}$
Order: \(17\)
Index: \(119\)\(\medspace = 7 \cdot 17 \)
Exponent: \(17\)
Generators: $ab^{77}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is normal, a direct factor, cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), central, a $p$-group, and simple.

Ambient group ($G$) information

Description: $C_{17}\times C_{119}$
Order: \(2023\)\(\medspace = 7 \cdot 17^{2} \)
Exponent: \(119\)\(\medspace = 7 \cdot 17 \)
Nilpotency class:$1$
Derived length:$1$

The ambient group is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), elementary for $p = 17$ (hence hyperelementary), and metacyclic.

Quotient group ($Q$) structure

Description: $C_{119}$
Order: \(119\)\(\medspace = 7 \cdot 17 \)
Exponent: \(119\)\(\medspace = 7 \cdot 17 \)
Automorphism Group: $C_2\times C_{48}$, of order \(96\)\(\medspace = 2^{5} \cdot 3 \)
Outer Automorphisms: $C_2\times C_{48}$, of order \(96\)\(\medspace = 2^{5} \cdot 3 \)
Nilpotency class: $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 7,17$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_6\times C_{16}.\PSL(2,17).C_2$
$\operatorname{Aut}(H)$ $C_{16}$, of order \(16\)\(\medspace = 2^{4} \)
$\operatorname{res}(S)$$C_{16}$, of order \(16\)\(\medspace = 2^{4} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(1632\)\(\medspace = 2^{5} \cdot 3 \cdot 17 \)
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$C_{17}\times C_{119}$
Normalizer:$C_{17}\times C_{119}$
Complements:$C_{119}$ $C_{119}$ $C_{119}$ $C_{119}$ $C_{119}$ $C_{119}$ $C_{119}$ $C_{119}$ $C_{119}$ $C_{119}$ $C_{119}$ $C_{119}$ $C_{119}$ $C_{119}$ $C_{119}$ $C_{119}$ $C_{119}$
Minimal over-subgroups:$C_{17}^2$$C_{119}$
Maximal under-subgroups:$C_1$
Autjugate subgroups:2023.a.119.a1.a12023.a.119.a1.b12023.a.119.a1.c12023.a.119.a1.e12023.a.119.a1.f12023.a.119.a1.g12023.a.119.a1.h12023.a.119.a1.i12023.a.119.a1.j12023.a.119.a1.k12023.a.119.a1.l12023.a.119.a1.m12023.a.119.a1.n12023.a.119.a1.o12023.a.119.a1.p12023.a.119.a1.q12023.a.119.a1.r1

Other information

Möbius function$1$
Projective image$C_{119}$