Properties

Label 20160.l.8.a1
Order $ 2^{3} \cdot 3^{2} \cdot 5 \cdot 7 $
Index $ 2^{3} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$A_7$
Order: \(2520\)\(\medspace = 2^{3} \cdot 3^{2} \cdot 5 \cdot 7 \)
Index: \(8\)\(\medspace = 2^{3} \)
Exponent: \(420\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \cdot 7 \)
Generators: $\langle(1,7,2), (1,3)(2,4,5)(6,7)\rangle$ Copy content Toggle raw display
Derived length: $0$

The subgroup is the commutator subgroup (hence characteristic and normal), a semidirect factor, nonabelian, and simple (hence nonsolvable, perfect, quasisimple, and almost simple).

Ambient group ($G$) information

Description: $C_2^2\times S_7$
Order: \(20160\)\(\medspace = 2^{6} \cdot 3^{2} \cdot 5 \cdot 7 \)
Exponent: \(420\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \cdot 7 \)
Derived length:$1$

The ambient group is nonabelian, nonsolvable, and rational.

Quotient group ($Q$) structure

Description: $C_2^3$
Order: \(8\)\(\medspace = 2^{3} \)
Exponent: \(2\)
Automorphism Group: $\PSL(2,7)$, of order \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \)
Outer Automorphisms: $\PSL(2,7)$, of order \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \)
Derived length: $1$

The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$S_4\times S_7$, of order \(120960\)\(\medspace = 2^{7} \cdot 3^{3} \cdot 5 \cdot 7 \)
$\operatorname{Aut}(H)$ $S_7$, of order \(5040\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 5 \cdot 7 \)
$W$$S_7$, of order \(5040\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 5 \cdot 7 \)

Related subgroups

Centralizer:$C_2^2$
Normalizer:$C_2^2\times S_7$
Complements:$C_2^3$ $C_2^3$ $C_2^3$ $C_2^3$ $C_2^3$ $C_2^3$ $C_2^3$
Minimal over-subgroups:$C_2\times A_7$$S_7$
Maximal under-subgroups:$A_6$$\PSL(2,7)$$S_5$$C_3:S_4$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function$-8$
Projective image$C_2^2\times S_7$