Properties

Label 20160.l.70.b1
Order $ 2^{5} \cdot 3^{2} $
Index $ 2 \cdot 5 \cdot 7 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$D_6\times S_4$
Order: \(288\)\(\medspace = 2^{5} \cdot 3^{2} \)
Index: \(70\)\(\medspace = 2 \cdot 5 \cdot 7 \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $\langle(3,4,6), (8,11)(9,10), (1,6)(3,4), (1,4)(3,6)(8,11)(9,10), (3,4)(8,11)(9,10), (2,5,7)(8,11)(9,10), (2,5)\rangle$ Copy content Toggle raw display
Derived length: $3$

The subgroup is nonabelian, monomial (hence solvable), and rational.

Ambient group ($G$) information

Description: $C_2^2\times S_7$
Order: \(20160\)\(\medspace = 2^{6} \cdot 3^{2} \cdot 5 \cdot 7 \)
Exponent: \(420\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \cdot 7 \)
Derived length:$1$

The ambient group is nonabelian, nonsolvable, and rational.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$S_4\times S_7$, of order \(120960\)\(\medspace = 2^{7} \cdot 3^{3} \cdot 5 \cdot 7 \)
$\operatorname{Aut}(H)$ $C_2^2:D_6^2$, of order \(576\)\(\medspace = 2^{6} \cdot 3^{2} \)
$W$$S_3\times S_4$, of order \(144\)\(\medspace = 2^{4} \cdot 3^{2} \)

Related subgroups

Centralizer:$C_2^2$
Normalizer:$C_2^2:D_6^2$
Normal closure:$C_2^2\times S_7$
Core:$C_2$
Minimal over-subgroups:$C_2\times S_7$$C_2^2:D_6^2$
Maximal under-subgroups:$A_4\times D_6$$C_6\times S_4$$C_6:S_4$$S_3\times S_4$$S_3\times S_4$$D_4\times D_6$$C_2^2\times S_4$$S_3\times D_6$

Other information

Number of subgroups in this autjugacy class$210$
Number of conjugacy classes in this autjugacy class$6$
Möbius function$1$
Projective image$C_2\times S_7$