Properties

Label 2016.ey.4.d1.a1
Order $ 2^{3} \cdot 3^{2} \cdot 7 $
Index $ 2^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$A_4:F_7$
Order: \(504\)\(\medspace = 2^{3} \cdot 3^{2} \cdot 7 \)
Index: \(4\)\(\medspace = 2^{2} \)
Exponent: \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \)
Generators: $a^{3}b, e^{7}, cd, e^{2}, a^{2}, d$ Copy content Toggle raw display
Derived length: $3$

The subgroup is nonabelian and monomial (hence solvable).

Ambient group ($G$) information

Description: $C_7:(C_3\times \GL(2,\mathbb{Z}/4))$
Order: \(2016\)\(\medspace = 2^{5} \cdot 3^{2} \cdot 7 \)
Exponent: \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^2\times S_4\times F_7$, of order \(4032\)\(\medspace = 2^{6} \cdot 3^{2} \cdot 7 \)
$\operatorname{Aut}(H)$ $S_4\times F_7$, of order \(1008\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 7 \)
$\operatorname{res}(S)$$S_4\times F_7$, of order \(1008\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 7 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(2\)
$W$$A_4:F_7$, of order \(504\)\(\medspace = 2^{3} \cdot 3^{2} \cdot 7 \)

Related subgroups

Centralizer:$C_2$
Normalizer:$C_2\times A_4:F_7$
Normal closure:$C_2\times A_4:F_7$
Core:$A_4\times C_7:C_3$
Minimal over-subgroups:$C_2\times A_4:F_7$
Maximal under-subgroups:$A_4\times C_7:C_3$$D_{14}:C_6$$C_7:S_4$$C_{21}:C_6$$C_3\times S_4$

Other information

Number of subgroups in this conjugacy class$2$
Möbius function$0$
Projective image$C_7:(C_3\times \GL(2,\mathbb{Z}/4))$