Properties

Label 20000.fu.2.e1
Order $ 2^{4} \cdot 5^{4} $
Index $ 2 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_5^4.C_4^2$
Order: \(10000\)\(\medspace = 2^{4} \cdot 5^{4} \)
Index: \(2\)
Exponent: \(20\)\(\medspace = 2^{2} \cdot 5 \)
Generators: $ab, b^{2}, d, a^{2}b^{8}c^{6}e^{2}, c^{4}e^{3}, e, c^{5}, c^{10}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is characteristic (hence normal), maximal, a semidirect factor, nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.

Ambient group ($G$) information

Description: $C_{10}.D_5^2:F_5$
Order: \(20000\)\(\medspace = 2^{5} \cdot 5^{4} \)
Exponent: \(20\)\(\medspace = 2^{2} \cdot 5 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Quotient group ($Q$) structure

Description: $C_2$
Order: \(2\)
Exponent: \(2\)
Automorphism Group: $C_1$, of order $1$
Outer Automorphisms: $C_1$, of order $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, simple, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_5^4.C_4^3.C_2.C_2^6$
$\operatorname{Aut}(H)$ $C_5^4.C_4^3.C_2^3.C_2^4$
$W$$C_5^4:(C_2^2\times C_4)$, of order \(10000\)\(\medspace = 2^{4} \cdot 5^{4} \)

Related subgroups

Centralizer:$C_2$
Normalizer:$C_{10}.D_5^2:F_5$
Complements:$C_2$
Minimal over-subgroups:$C_{10}.D_5^2:F_5$
Maximal under-subgroups:$C_5^4:(C_2\times C_4)$$C_2\times C_5^4:C_4$$C_2\times C_5^4:C_4$$C_5^3:C_4^2$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function$-1$
Projective image$C_5^4:(C_2^2\times C_4)$