Properties

Label 20000.dz.4000.e1
Order $ 5 $
Index $ 2^{5} \cdot 5^{3} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_5$
Order: \(5\)
Index: \(4000\)\(\medspace = 2^{5} \cdot 5^{3} \)
Exponent: \(5\)
Generators: $ce$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, and simple.

Ambient group ($G$) information

Description: $(C_5^3\times C_{10}).\OD_{16}$
Order: \(20000\)\(\medspace = 2^{5} \cdot 5^{4} \)
Exponent: \(40\)\(\medspace = 2^{3} \cdot 5 \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_5^4.C_4.C_2^3.C_2^5$
$\operatorname{Aut}(H)$ $C_4$, of order \(4\)\(\medspace = 2^{2} \)
$W$$C_2$, of order \(2\)

Related subgroups

Centralizer:$C_5^3\times C_{10}$
Normalizer:$C_5^4:C_2^2$
Normal closure:$C_5^4$
Core:$C_1$
Minimal over-subgroups:$C_5^2$$C_5^2$$C_5^2$$C_5^2$$C_5^2$$C_5^2$$C_5^2$$C_5^2$$C_5^2$$C_5^2$$C_5^2$$C_5^2$$C_5^2$$C_5^2$$C_5^2$$C_5^2$$C_5^2$$C_5^2$$C_{10}$$D_5$$D_5$
Maximal under-subgroups:$C_1$

Other information

Number of subgroups in this autjugacy class$32$
Number of conjugacy classes in this autjugacy class$4$
Möbius function$0$
Projective image$(C_5^3\times C_{10}).\OD_{16}$