Properties

Label 20000.dz.2000.f1
Order $ 2 \cdot 5 $
Index $ 2^{4} \cdot 5^{3} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{10}$
Order: \(10\)\(\medspace = 2 \cdot 5 \)
Index: \(2000\)\(\medspace = 2^{4} \cdot 5^{3} \)
Exponent: \(10\)\(\medspace = 2 \cdot 5 \)
Generators: $a^{4}b^{2}c^{3}d^{4}e^{2}f^{3}, ce^{3}f$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,5$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).

Ambient group ($G$) information

Description: $(C_5^3\times C_{10}).\OD_{16}$
Order: \(20000\)\(\medspace = 2^{5} \cdot 5^{4} \)
Exponent: \(40\)\(\medspace = 2^{3} \cdot 5 \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_5^4.C_4.C_2^3.C_2^5$
$\operatorname{Aut}(H)$ $C_4$, of order \(4\)\(\medspace = 2^{2} \)
$W$$C_2$, of order \(2\)

Related subgroups

Centralizer:$C_5^3\times C_{10}$
Normalizer:$C_5^4:C_2^2$
Normal closure:$C_5^3\times C_{10}$
Core:$C_2$
Minimal over-subgroups:$C_5\times C_{10}$$C_5\times C_{10}$$C_5\times C_{10}$$C_5\times C_{10}$$C_5\times C_{10}$$C_5\times C_{10}$$C_5\times C_{10}$$C_5\times C_{10}$$C_5\times C_{10}$$C_5\times C_{10}$$C_5\times C_{10}$$C_5\times C_{10}$$C_5\times C_{10}$$D_{10}$
Maximal under-subgroups:$C_5$$C_2$

Other information

Number of subgroups in this autjugacy class$16$
Number of conjugacy classes in this autjugacy class$2$
Möbius function$0$
Projective image$C_5^4.\OD_{16}$