Properties

Label 20000.dx.10000.a1
Order $ 2 $
Index $ 2^{4} \cdot 5^{4} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2$
Order: \(2\)
Index: \(10000\)\(\medspace = 2^{4} \cdot 5^{4} \)
Exponent: \(2\)
Generators: $f^{5}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is the center (hence characteristic, normal, abelian, central, nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a direct factor, cyclic (hence elementary, hyperelementary, metacyclic, and a Z-group), a $p$-group, simple, and rational.

Ambient group ($G$) information

Description: $(C_5^3\times C_{10}):\OD_{16}$
Order: \(20000\)\(\medspace = 2^{5} \cdot 5^{4} \)
Exponent: \(40\)\(\medspace = 2^{3} \cdot 5 \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Quotient group ($Q$) structure

Description: $C_5^4.\OD_{16}$
Order: \(10000\)\(\medspace = 2^{4} \cdot 5^{4} \)
Exponent: \(40\)\(\medspace = 2^{3} \cdot 5 \)
Automorphism Group: $C_5^4:(C_4^3:C_2^2)$, of order \(160000\)\(\medspace = 2^{8} \cdot 5^{4} \)
Outer Automorphisms: $C_2^2\times C_4$, of order \(16\)\(\medspace = 2^{4} \)
Nilpotency class: $-1$
Derived length: $3$

The quotient is nonabelian and monomial (hence solvable).

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_5^4.C_4.C_2^3.C_2^5$
$\operatorname{Aut}(H)$ $C_1$, of order $1$
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$(C_5^3\times C_{10}):\OD_{16}$
Normalizer:$(C_5^3\times C_{10}):\OD_{16}$
Complements:$C_5^4.\OD_{16}$
Minimal over-subgroups:$C_{10}$$C_{10}$$C_{10}$$C_{10}$$C_{10}$$C_{10}$$C_{10}$$C_{10}$$C_2^2$$C_2^2$
Maximal under-subgroups:$C_1$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function$0$
Projective image$C_5^4.\OD_{16}$