Properties

Label 2000.957.20.g1
Order $ 2^{2} \cdot 5^{2} $
Index $ 2^{2} \cdot 5 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{10}^2$
Order: \(100\)\(\medspace = 2^{2} \cdot 5^{2} \)
Index: \(20\)\(\medspace = 2^{2} \cdot 5 \)
Exponent: \(10\)\(\medspace = 2 \cdot 5 \)
Generators: $a, b^{2}, d^{2}, b^{5}d^{5}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group) and metacyclic.

Ambient group ($G$) information

Description: $C_5\times D_{10}^2$
Order: \(2000\)\(\medspace = 2^{4} \cdot 5^{3} \)
Exponent: \(10\)\(\medspace = 2 \cdot 5 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{10}^2.A_4.C_4^3.C_2^2$
$\operatorname{Aut}(H)$ $S_3\times \GL(2,5)$, of order \(2880\)\(\medspace = 2^{6} \cdot 3^{2} \cdot 5 \)
$\operatorname{res}(S)$$C_2\times C_4^2$, of order \(32\)\(\medspace = 2^{5} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(160\)\(\medspace = 2^{5} \cdot 5 \)
$W$$C_2$, of order \(2\)

Related subgroups

Centralizer:$C_2\times C_{10}^2$
Normalizer:$C_{10}^2:C_2^2$
Normal closure:$D_{10}\times C_5^2$
Core:$C_5\times C_{10}$
Minimal over-subgroups:$D_{10}\times C_5^2$$C_{10}\times D_{10}$$C_2\times C_{10}^2$
Maximal under-subgroups:$C_5\times C_{10}$$C_5\times C_{10}$$C_2\times C_{10}$$C_2\times C_{10}$$C_2\times C_{10}$

Other information

Number of subgroups in this autjugacy class$60$
Number of conjugacy classes in this autjugacy class$12$
Möbius function$-2$
Projective image$D_5\times D_{10}$