Properties

Label 2000.505.250.b1
Order $ 2^{3} $
Index $ 2 \cdot 5^{3} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^3$
Order: \(8\)\(\medspace = 2^{3} \)
Index: \(250\)\(\medspace = 2 \cdot 5^{3} \)
Exponent: \(2\)
Generators: $a, c^{5}, d^{25}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), and rational.

Ambient group ($G$) information

Description: $C_{10}^2.D_{10}$
Order: \(2000\)\(\medspace = 2^{4} \cdot 5^{3} \)
Exponent: \(50\)\(\medspace = 2 \cdot 5^{2} \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$D_{25}.C_{10}\times C_2^3.\PSL(2,7)$
$\operatorname{Aut}(H)$ $\PSL(2,7)$, of order \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \)
$\operatorname{res}(S)$$S_4$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(80\)\(\medspace = 2^{4} \cdot 5 \)
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$C_2^3\times C_{10}$
Normalizer:$C_2^3\times C_{10}$
Normal closure:$C_2\times D_{50}$
Core:$C_2^2$
Minimal over-subgroups:$C_2^2\times C_{10}$$C_2\times D_{10}$$C_2^4$
Maximal under-subgroups:$C_2^2$$C_2^2$

Other information

Number of subgroups in this autjugacy class$350$
Number of conjugacy classes in this autjugacy class$14$
Möbius function$0$
Projective image$C_{50}:C_{10}$