Subgroup ($H$) information
| Description: | $C_2^2\times D_{10}$ |
| Order: | \(80\)\(\medspace = 2^{4} \cdot 5 \) |
| Index: | \(25\)\(\medspace = 5^{2} \) |
| Exponent: | \(10\)\(\medspace = 2 \cdot 5 \) |
| Generators: |
$a, c^{5}, d^{25}, b, d^{10}$
|
| Derived length: | $2$ |
The subgroup is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, metabelian, and an A-group.
Ambient group ($G$) information
| Description: | $C_{10}^2.D_{10}$ |
| Order: | \(2000\)\(\medspace = 2^{4} \cdot 5^{3} \) |
| Exponent: | \(50\)\(\medspace = 2 \cdot 5^{2} \) |
| Derived length: | $2$ |
The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $D_{25}.C_{10}\times C_2^3.\PSL(2,7)$ |
| $\operatorname{Aut}(H)$ | $F_5\times C_2^3:\GL(3,2)$, of order \(26880\)\(\medspace = 2^{8} \cdot 3 \cdot 5 \cdot 7 \) |
| $\operatorname{res}(S)$ | $F_5\times C_2^3:\GL(3,2)$, of order \(26880\)\(\medspace = 2^{8} \cdot 3 \cdot 5 \cdot 7 \) |
| $\card{\operatorname{ker}(\operatorname{res})}$ | \(5\) |
| $W$ | $D_5$, of order \(10\)\(\medspace = 2 \cdot 5 \) |
Related subgroups
Other information
| Number of subgroups in this autjugacy class | $5$ |
| Number of conjugacy classes in this autjugacy class | $1$ |
| Möbius function | $1$ |
| Projective image | $C_{25}:C_{10}$ |