Properties

Label 1998.49.6.b1.b1
Order $ 3^{2} \cdot 37 $
Index $ 2 \cdot 3 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{37}:C_9$
Order: \(333\)\(\medspace = 3^{2} \cdot 37 \)
Index: \(6\)\(\medspace = 2 \cdot 3 \)
Exponent: \(333\)\(\medspace = 3^{2} \cdot 37 \)
Generators: $a^{2}b^{2}, a^{6}b^{108}, b^{3}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is normal, a semidirect factor, nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), and hyperelementary for $p = 3$.

Ambient group ($G$) information

Description: $C_{111}:C_{18}$
Order: \(1998\)\(\medspace = 2 \cdot 3^{3} \cdot 37 \)
Exponent: \(666\)\(\medspace = 2 \cdot 3^{2} \cdot 37 \)
Derived length:$2$

The ambient group is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and an A-group.

Quotient group ($Q$) structure

Description: $C_6$
Order: \(6\)\(\medspace = 2 \cdot 3 \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Automorphism Group: $C_2$, of order \(2\)
Outer Automorphisms: $C_2$, of order \(2\)
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,3$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$S_3\times F_{37}$, of order \(7992\)\(\medspace = 2^{3} \cdot 3^{3} \cdot 37 \)
$\operatorname{Aut}(H)$ $F_{37}$, of order \(1332\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 37 \)
$\operatorname{res}(S)$$F_{37}$, of order \(1332\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 37 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(2\)
$W$$C_{37}:C_{18}$, of order \(666\)\(\medspace = 2 \cdot 3^{2} \cdot 37 \)

Related subgroups

Centralizer:$C_3$
Normalizer:$C_{111}:C_{18}$
Complements:$C_6$ $C_6$ $C_6$
Minimal over-subgroups:$C_{111}:C_9$$C_{37}:C_{18}$
Maximal under-subgroups:$C_{37}:C_3$$C_9$
Autjugate subgroups:1998.49.6.b1.a11998.49.6.b1.c1

Other information

Möbius function$1$
Projective image$C_{111}:C_{18}$