Properties

Label 1984.389.8.b1.a1
Order $ 2^{3} \cdot 31 $
Index $ 2^{3} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$Q_8\times C_{31}$
Order: \(248\)\(\medspace = 2^{3} \cdot 31 \)
Index: \(8\)\(\medspace = 2^{3} \)
Exponent: \(124\)\(\medspace = 2^{2} \cdot 31 \)
Generators: $ab, b^{24}, b^{16}, c$ Copy content Toggle raw display
Nilpotency class: $2$
Derived length: $2$

The subgroup is nonabelian, elementary for $p = 2$ (hence nilpotent, solvable, supersolvable, monomial, and hyperelementary), and metacyclic (hence metabelian).

Ambient group ($G$) information

Description: $C_{31}:Q_{64}$
Order: \(1984\)\(\medspace = 2^{6} \cdot 31 \)
Exponent: \(992\)\(\medspace = 2^{5} \cdot 31 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{248}.C_{60}.C_2^4$
$\operatorname{Aut}(H)$ $S_4\times C_{30}$, of order \(720\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 5 \)
$\operatorname{res}(S)$$D_4\times C_{30}$, of order \(240\)\(\medspace = 2^{4} \cdot 3 \cdot 5 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(248\)\(\medspace = 2^{3} \cdot 31 \)
$W$$D_4$, of order \(8\)\(\medspace = 2^{3} \)

Related subgroups

Centralizer:$C_{62}$
Normalizer:$Q_{16}\times C_{31}$
Normal closure:$C_{31}\times Q_{32}$
Core:$C_{124}$
Minimal over-subgroups:$Q_{16}\times C_{31}$
Maximal under-subgroups:$C_{124}$$C_{124}$$Q_8$

Other information

Number of subgroups in this conjugacy class$4$
Möbius function$0$
Projective image$C_{31}:D_{16}$