Properties

Label 1984.320.992.b1.a1
Order $ 2 $
Index $ 2^{5} \cdot 31 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2$
Order: \(2\)
Index: \(992\)\(\medspace = 2^{5} \cdot 31 \)
Exponent: \(2\)
Generators: $c^{31}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, simple, and rational.

Ambient group ($G$) information

Description: $(C_2\times C_{248}):C_4$
Order: \(1984\)\(\medspace = 2^{6} \cdot 31 \)
Exponent: \(248\)\(\medspace = 2^{3} \cdot 31 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{62}.C_{30}.C_2^6.C_2$
$\operatorname{Aut}(H)$ $C_1$, of order $1$
$\operatorname{res}(S)$$C_1$, of order $1$
$\card{\operatorname{ker}(\operatorname{res})}$\(119040\)\(\medspace = 2^{8} \cdot 3 \cdot 5 \cdot 31 \)
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$\OD_{16}\times C_{62}$
Normalizer:$\OD_{16}\times C_{62}$
Normal closure:$C_2^2$
Core:$C_1$
Minimal over-subgroups:$C_{62}$$C_2^2$$C_2^2$
Maximal under-subgroups:$C_1$

Other information

Number of subgroups in this conjugacy class$2$
Möbius function$0$
Projective image$(C_2\times C_{248}):C_4$