Properties

Label 1984.320.4.d1.b1
Order $ 2^{4} \cdot 31 $
Index $ 2^{2} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{124}.C_4$
Order: \(496\)\(\medspace = 2^{4} \cdot 31 \)
Index: \(4\)\(\medspace = 2^{2} \)
Exponent: \(248\)\(\medspace = 2^{3} \cdot 31 \)
Generators: $b^{4}, c^{2}, a^{2}b^{6}c^{31}, c^{31}, ab$ Copy content Toggle raw display
Derived length: $2$

The subgroup is normal, a semidirect factor, nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and hyperelementary for $p = 2$.

Ambient group ($G$) information

Description: $(C_2\times C_{248}):C_4$
Order: \(1984\)\(\medspace = 2^{6} \cdot 31 \)
Exponent: \(248\)\(\medspace = 2^{3} \cdot 31 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Quotient group ($Q$) structure

Description: $C_4$
Order: \(4\)\(\medspace = 2^{2} \)
Exponent: \(4\)\(\medspace = 2^{2} \)
Automorphism Group: $C_2$, of order \(2\)
Outer Automorphisms: $C_2$, of order \(2\)
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group) and a $p$-group.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{62}.C_{30}.C_2^6.C_2$
$\operatorname{Aut}(H)$ $C_{62}.C_{30}.C_2^3$
$\card{\operatorname{res}(S)}$\(14880\)\(\medspace = 2^{5} \cdot 3 \cdot 5 \cdot 31 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(8\)\(\medspace = 2^{3} \)
$W$$C_{31}:D_4$, of order \(248\)\(\medspace = 2^{3} \cdot 31 \)

Related subgroups

Centralizer:$C_2\times C_4$
Normalizer:$(C_2\times C_{248}):C_4$
Complements:$C_4$ $C_4$
Minimal over-subgroups:$C_{62}:\OD_{16}$
Maximal under-subgroups:$C_2\times C_{124}$$C_{31}:C_8$$\OD_{16}$
Autjugate subgroups:1984.320.4.d1.a1

Other information

Möbius function$0$
Projective image$C_{62}.C_4^2$