Subgroup ($H$) information
| Description: | $C_2^2$ | 
| Order: | \(4\)\(\medspace = 2^{2} \) | 
| Index: | \(496\)\(\medspace = 2^{4} \cdot 31 \) | 
| Exponent: | \(2\) | 
| Generators: | $d^{62}, c$ | 
| Nilpotency class: | $1$ | 
| Derived length: | $1$ | 
The subgroup is characteristic (hence normal), abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), metacyclic, and rational.
Ambient group ($G$) information
| Description: | $C_2^3.D_{124}$ | 
| Order: | \(1984\)\(\medspace = 2^{6} \cdot 31 \) | 
| Exponent: | \(124\)\(\medspace = 2^{2} \cdot 31 \) | 
| Derived length: | $2$ | 
The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.
Quotient group ($Q$) structure
| Description: | $C_{62}.D_4$ | 
| Order: | \(496\)\(\medspace = 2^{4} \cdot 31 \) | 
| Exponent: | \(124\)\(\medspace = 2^{2} \cdot 31 \) | 
| Automorphism Group: | $C_{62}.C_{30}.C_2^4$ | 
| Outer Automorphisms: | $D_4\times C_{30}$, of order \(240\)\(\medspace = 2^{4} \cdot 3 \cdot 5 \) | 
| Nilpotency class: | $-1$ | 
| Derived length: | $2$ | 
The quotient is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_{62}.C_{30}.C_2^6.C_2$ | 
| $\operatorname{Aut}(H)$ | $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \) | 
| $\operatorname{res}(\operatorname{Aut}(G))$ | $C_2$, of order \(2\) | 
| $\card{\operatorname{ker}(\operatorname{res})}$ | \(119040\)\(\medspace = 2^{8} \cdot 3 \cdot 5 \cdot 31 \) | 
| $W$ | $C_2$, of order \(2\) | 
Related subgroups
| Centralizer: | $C_2^3:C_{124}$ | |||||
| Normalizer: | $C_2^3.D_{124}$ | |||||
| Minimal over-subgroups: | $C_2\times C_{62}$ | $C_2^3$ | $C_2^3$ | $C_2^3$ | $C_2\times C_4$ | $C_2\times C_4$ | 
| Maximal under-subgroups: | $C_2$ | $C_2$ | 
Other information
| Möbius function | $0$ | 
| Projective image | $C_{62}.C_4^2$ | 
