Properties

Label 1984.311.496.a1.a1
Order $ 2^{2} $
Index $ 2^{4} \cdot 31 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^2$
Order: \(4\)\(\medspace = 2^{2} \)
Index: \(496\)\(\medspace = 2^{4} \cdot 31 \)
Exponent: \(2\)
Generators: $b^{4}, c^{31}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is characteristic (hence normal), central (hence abelian, nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), metacyclic, and rational.

Ambient group ($G$) information

Description: $C_{124}.C_4^2$
Order: \(1984\)\(\medspace = 2^{6} \cdot 31 \)
Exponent: \(248\)\(\medspace = 2^{3} \cdot 31 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Quotient group ($Q$) structure

Description: $C_{62}.D_4$
Order: \(496\)\(\medspace = 2^{4} \cdot 31 \)
Exponent: \(124\)\(\medspace = 2^{2} \cdot 31 \)
Automorphism Group: $C_{31}.C_{30}.C_2^4$
Outer Automorphisms: $C_2^2\times C_{30}$, of order \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \)
Nilpotency class: $-1$
Derived length: $2$

The quotient is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{62}.C_{30}.C_2^6.C_2$
$\operatorname{Aut}(H)$ $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
$\operatorname{res}(\operatorname{Aut}(G))$$C_1$, of order $1$
$\card{\operatorname{ker}(\operatorname{res})}$\(238080\)\(\medspace = 2^{9} \cdot 3 \cdot 5 \cdot 31 \)
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$C_{124}.C_4^2$
Normalizer:$C_{124}.C_4^2$
Minimal over-subgroups:$C_2\times C_{62}$$C_2^3$$C_2\times C_4$$C_2\times C_4$
Maximal under-subgroups:$C_2$$C_2$$C_2$

Other information

Möbius function$0$
Projective image$C_{62}.D_4$