Properties

Label 1984.311.32.f1.a1
Order $ 2 \cdot 31 $
Index $ 2^{5} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{62}$
Order: \(62\)\(\medspace = 2 \cdot 31 \)
Index: \(32\)\(\medspace = 2^{5} \)
Exponent: \(62\)\(\medspace = 2 \cdot 31 \)
Generators: $b^{4}, c^{2}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is characteristic (hence normal) and cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,31$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).

Ambient group ($G$) information

Description: $C_{124}.C_4^2$
Order: \(1984\)\(\medspace = 2^{6} \cdot 31 \)
Exponent: \(248\)\(\medspace = 2^{3} \cdot 31 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Quotient group ($Q$) structure

Description: $C_2.C_4^2$
Order: \(32\)\(\medspace = 2^{5} \)
Exponent: \(4\)\(\medspace = 2^{2} \)
Automorphism Group: $C_2\wr S_3$, of order \(384\)\(\medspace = 2^{7} \cdot 3 \)
Outer Automorphisms: $\GL(2,\mathbb{Z}/4)$, of order \(96\)\(\medspace = 2^{5} \cdot 3 \)
Nilpotency class: $2$
Derived length: $2$

The quotient is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), and metabelian.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{62}.C_{30}.C_2^6.C_2$
$\operatorname{Aut}(H)$ $C_{30}$, of order \(30\)\(\medspace = 2 \cdot 3 \cdot 5 \)
$\operatorname{res}(\operatorname{Aut}(G))$$C_{30}$, of order \(30\)\(\medspace = 2 \cdot 3 \cdot 5 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(7936\)\(\medspace = 2^{8} \cdot 31 \)
$W$$C_2$, of order \(2\)

Related subgroups

Centralizer:$C_2\times C_4:C_{124}$
Normalizer:$C_{124}.C_4^2$
Minimal over-subgroups:$C_2\times C_{62}$$C_2\times C_{62}$$C_2\times C_{62}$$C_{124}$$C_{124}$$C_{124}$$C_{124}$
Maximal under-subgroups:$C_{31}$$C_2$

Other information

Möbius function$0$
Projective image$C_{62}.C_4^2$