Properties

Label 19600.h.1960.d1
Order $ 2 \cdot 5 $
Index $ 2^{3} \cdot 5 \cdot 7^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{10}$
Order: \(10\)\(\medspace = 2 \cdot 5 \)
Index: \(1960\)\(\medspace = 2^{3} \cdot 5 \cdot 7^{2} \)
Exponent: \(10\)\(\medspace = 2 \cdot 5 \)
Generators: $a^{70}b^{105}, a^{84}b^{70}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,5$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).

Ambient group ($G$) information

Description: $C_{140}.C_{140}$
Order: \(19600\)\(\medspace = 2^{4} \cdot 5^{2} \cdot 7^{2} \)
Exponent: \(280\)\(\medspace = 2^{3} \cdot 5 \cdot 7 \)
Derived length:$2$

The ambient group is nonabelian and metacyclic (hence solvable, supersolvable, monomial, and metabelian).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{70}.C_6^2.C_2^6.C_2$
$\operatorname{Aut}(H)$ $C_4$, of order \(4\)\(\medspace = 2^{2} \)
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$C_{70}\times C_{140}$
Normalizer:$C_{70}\times C_{140}$
Normal closure:$C_2\times C_{10}$
Core:$C_5$
Minimal over-subgroups:$C_{70}$$C_{70}$$C_{70}$$C_5\times C_{10}$$C_2\times C_{10}$
Maximal under-subgroups:$C_5$$C_2$

Other information

Number of subgroups in this autjugacy class$2$
Number of conjugacy classes in this autjugacy class$1$
Möbius function$0$
Projective image$C_{140}.C_{28}$