Properties

Label 19600.c.14.a1.a1
Order $ 2^{3} \cdot 5^{2} \cdot 7 $
Index $ 2 \cdot 7 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{20}\times D_{35}$
Order: \(1400\)\(\medspace = 2^{3} \cdot 5^{2} \cdot 7 \)
Index: \(14\)\(\medspace = 2 \cdot 7 \)
Exponent: \(140\)\(\medspace = 2^{2} \cdot 5 \cdot 7 \)
Generators: $a^{35}b^{161}, b^{40}, a^{42}b^{70}, b^{140}, b^{70}, b^{168}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is characteristic (hence normal), nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and an A-group.

Ambient group ($G$) information

Description: $C_{280}:C_{70}$
Order: \(19600\)\(\medspace = 2^{4} \cdot 5^{2} \cdot 7^{2} \)
Exponent: \(280\)\(\medspace = 2^{3} \cdot 5 \cdot 7 \)
Derived length:$2$

The ambient group is nonabelian and metacyclic (hence solvable, supersolvable, monomial, and metabelian).

Quotient group ($Q$) structure

Description: $C_{14}$
Order: \(14\)\(\medspace = 2 \cdot 7 \)
Exponent: \(14\)\(\medspace = 2 \cdot 7 \)
Automorphism Group: $C_6$, of order \(6\)\(\medspace = 2 \cdot 3 \)
Outer Automorphisms: $C_6$, of order \(6\)\(\medspace = 2 \cdot 3 \)
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,7$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^4\times C_{12}\times F_5\times F_7$
$\operatorname{Aut}(H)$ $C_2^2\times C_4\times F_5\times F_7$
$W$$D_{70}$, of order \(140\)\(\medspace = 2^{2} \cdot 5 \cdot 7 \)

Related subgroups

Centralizer:$C_{140}$
Normalizer:$C_{280}:C_{70}$
Minimal over-subgroups:$D_{35}\times C_{140}$$C_{280}:C_{10}$
Maximal under-subgroups:$C_5\times D_{70}$$C_5\times C_{140}$$C_{35}:C_{20}$$C_4\times D_{35}$$D_7\times C_{20}$$D_5\times C_{20}$

Other information

Möbius function$1$
Projective image$C_7\times D_{70}$