Properties

Label 1960.137.2.d1.c1
Order $ 2^{2} \cdot 5 \cdot 7^{2} $
Index $ 2 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$D_7\times D_{35}$
Order: \(980\)\(\medspace = 2^{2} \cdot 5 \cdot 7^{2} \)
Index: \(2\)
Exponent: \(70\)\(\medspace = 2 \cdot 5 \cdot 7 \)
Generators: $ac^{35}, c^{42}, b^{2}, b^{7}, c^{10}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is normal, maximal, a direct factor, nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.

Ambient group ($G$) information

Description: $D_7\times D_{70}$
Order: \(1960\)\(\medspace = 2^{3} \cdot 5 \cdot 7^{2} \)
Exponent: \(70\)\(\medspace = 2 \cdot 5 \cdot 7 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.

Quotient group ($Q$) structure

Description: $C_2$
Order: \(2\)
Exponent: \(2\)
Automorphism Group: $C_1$, of order $1$
Outer Automorphisms: $C_1$, of order $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, simple, and rational.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_7.C_{105}.C_6.C_2^5$
$\operatorname{Aut}(H)$ $C_7^2.C_{15}.C_6.C_2^3$
$\card{\operatorname{res}(S)}$\(35280\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 5 \cdot 7^{2} \)
$\card{\operatorname{ker}(\operatorname{res})}$$1$
$W$$D_7\times D_{35}$, of order \(980\)\(\medspace = 2^{2} \cdot 5 \cdot 7^{2} \)

Related subgroups

Centralizer:$C_2$
Normalizer:$D_7\times D_{70}$
Complements:$C_2$ $C_2$ $C_2$ $C_2$
Minimal over-subgroups:$D_7\times D_{70}$
Maximal under-subgroups:$D_7\times C_{35}$$C_7\times D_{35}$$C_7:D_{35}$$D_7^2$$D_{70}$$D_5\times D_7$
Autjugate subgroups:1960.137.2.d1.a11960.137.2.d1.b11960.137.2.d1.d1

Other information

Möbius function$-1$
Projective image$D_7\times D_{70}$