Properties

Label 19584.d.2.c1.a1
Order $ 2^{6} \cdot 3^{2} \cdot 17 $
Index $ 2 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2.\PGL(2,17)$
Order: \(9792\)\(\medspace = 2^{6} \cdot 3^{2} \cdot 17 \)
Index: \(2\)
Exponent: \(4896\)\(\medspace = 2^{5} \cdot 3^{2} \cdot 17 \)
Generators: $\left(\begin{array}{ll}\alpha^{78} & \alpha^{256} \\ \alpha^{159} & \alpha^{50} \\ \end{array}\right), \left(\begin{array}{ll}\alpha^{259} & \alpha^{202} \\ \alpha^{67} & \alpha^{115} \\ \end{array}\right), \left(\begin{array}{ll}\alpha^{144} & 0 \\ 0 & \alpha^{144} \\ \end{array}\right)$ Copy content Toggle raw display
Derived length: $1$

The subgroup is characteristic (hence normal), maximal, a semidirect factor, nonabelian, and nonsolvable.

Ambient group ($G$) information

Description: $C_4.\PGL(2,17)$
Order: \(19584\)\(\medspace = 2^{7} \cdot 3^{2} \cdot 17 \)
Exponent: \(4896\)\(\medspace = 2^{5} \cdot 3^{2} \cdot 17 \)
Derived length:$1$

The ambient group is nonabelian and nonsolvable.

Quotient group ($Q$) structure

Description: $C_2$
Order: \(2\)
Exponent: \(2\)
Automorphism Group: $C_1$, of order $1$
Outer Automorphisms: $C_1$, of order $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, simple, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^2\times \PSL(2,17).C_2$
$\operatorname{Aut}(H)$ $C_2\times \PGL(2,17)$, of order \(9792\)\(\medspace = 2^{6} \cdot 3^{2} \cdot 17 \)
$W$$\PGL(2,17)$, of order \(4896\)\(\medspace = 2^{5} \cdot 3^{2} \cdot 17 \)

Related subgroups

Centralizer:$C_4$
Normalizer:$C_4.\PGL(2,17)$
Complements:$C_2$ $C_2$
Minimal over-subgroups:$C_4.\PGL(2,17)$
Maximal under-subgroups:$\SL(2,17)$$C_{17}:C_{32}$$C_9:Q_8$$Q_{64}$

Other information

Möbius function$-1$
Projective image$C_2\times \PGL(2,17)$