Properties

Label 19440.bb.270.d1.a1
Order $ 2^{3} \cdot 3^{2} $
Index $ 2 \cdot 3^{3} \cdot 5 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_6\times D_6$
Order: \(72\)\(\medspace = 2^{3} \cdot 3^{2} \)
Index: \(270\)\(\medspace = 2 \cdot 3^{3} \cdot 5 \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Generators: $\langle(1,4)(2,3)(7,8,9)(13,15,14), (7,8,9)(10,12,11), (1,4)(5,6)(7,12,8,11,9,10)(13,14), (7,9,8)(10,12,11)(13,15,14), (7,11,9,12,8,10)(13,15)\rangle$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.

Ambient group ($G$) information

Description: $C_3^2:C_6\times A_6$
Order: \(19440\)\(\medspace = 2^{4} \cdot 3^{5} \cdot 5 \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Derived length:$2$

The ambient group is nonabelian and nonsolvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3.S_3^2.A_6.C_2^2$
$\operatorname{Aut}(H)$ $D_6\times S_4$, of order \(288\)\(\medspace = 2^{5} \cdot 3^{2} \)
$W$$S_3^2$, of order \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)

Related subgroups

Centralizer:$C_2\times C_6$
Normalizer:$C_6^2:D_6$
Normal closure:$C_3^2:C_6\times A_6$
Core:$C_3^2$
Minimal over-subgroups:$C_6^2:C_6$$C_6^2:C_6$$C_{12}:D_6$
Maximal under-subgroups:$C_6\times S_3$$C_6\times S_3$$C_6^2$$C_2^2\times C_6$$C_2\times D_6$
Autjugate subgroups:19440.bb.270.d1.a2

Other information

Number of subgroups in this conjugacy class$45$
Möbius function$0$
Projective image$C_3^2:C_6\times A_6$