Subgroup ($H$) information
| Description: | $C_3^2:D_{54}$ |
| Order: | \(972\)\(\medspace = 2^{2} \cdot 3^{5} \) |
| Index: | \(2\) |
| Exponent: | \(54\)\(\medspace = 2 \cdot 3^{3} \) |
| Generators: |
$ad, d^{2}, c^{3}, b^{3}d, c^{9}, b^{2}, c^{10}$
|
| Derived length: | $3$ |
The subgroup is normal, maximal, a direct factor, nonabelian, and supersolvable (hence solvable and monomial).
Ambient group ($G$) information
| Description: | $C_2\times C_3^2:D_{54}$ |
| Order: | \(1944\)\(\medspace = 2^{3} \cdot 3^{5} \) |
| Exponent: | \(54\)\(\medspace = 2 \cdot 3^{3} \) |
| Derived length: | $3$ |
The ambient group is nonabelian and supersolvable (hence solvable and monomial).
Quotient group ($Q$) structure
| Description: | $C_2$ |
| Order: | \(2\) |
| Exponent: | \(2\) |
| Automorphism Group: | $C_1$, of order $1$ |
| Outer Automorphisms: | $C_1$, of order $1$ |
| Derived length: | $1$ |
The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, simple, and rational.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_2\times C_3^2:C_{27}.C_9.C_2^3$ |
| $\operatorname{Aut}(H)$ | $C_3^2:C_{27}.C_{18}.C_2$ |
| $\card{\operatorname{res}(S)}$ | \(8748\)\(\medspace = 2^{2} \cdot 3^{7} \) |
| $\card{\operatorname{ker}(\operatorname{res})}$ | $1$ |
| $W$ | $C_3^2:D_{54}$, of order \(972\)\(\medspace = 2^{2} \cdot 3^{5} \) |
Related subgroups
Other information
| Möbius function | $-1$ |
| Projective image | $C_2\times C_3^2:D_{54}$ |