Properties

Label 1944.3755.4.b1
Order $ 2 \cdot 3^{5} $
Index $ 2^{2} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3^4:C_6$
Order: \(486\)\(\medspace = 2 \cdot 3^{5} \)
Index: \(4\)\(\medspace = 2^{2} \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Generators: $\left(\begin{array}{rr} 35 & 13 \\ 0 & 1 \end{array}\right), \left(\begin{array}{rr} 1 & 12 \\ 0 & 1 \end{array}\right), \left(\begin{array}{rr} 1 & 15 \\ 27 & 10 \end{array}\right), \left(\begin{array}{rr} 25 & 24 \\ 0 & 1 \end{array}\right), \left(\begin{array}{rr} 25 & 0 \\ 0 & 25 \end{array}\right), \left(\begin{array}{rr} 25 & 4 \\ 24 & 1 \end{array}\right)$ Copy content Toggle raw display
Derived length: $2$

The subgroup is normal, a direct factor, nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Ambient group ($G$) information

Description: $C_2\times C_3^3:C_6^2$
Order: \(1944\)\(\medspace = 2^{3} \cdot 3^{5} \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Quotient group ($Q$) structure

Description: $C_2^2$
Order: \(4\)\(\medspace = 2^{2} \)
Exponent: \(2\)
Automorphism Group: $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
Outer Automorphisms: $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
Derived length: $1$

The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), metacyclic, and rational.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3^3.C_6^2.C_3^3.C_2^5$
$\operatorname{Aut}(H)$ $C_3^4:C_3.D_6^2$
$\card{\operatorname{res}(S)}$\(34992\)\(\medspace = 2^{4} \cdot 3^{7} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(6\)\(\medspace = 2 \cdot 3 \)
$W$$C_3^3:C_6$, of order \(162\)\(\medspace = 2 \cdot 3^{4} \)

Related subgroups

Centralizer:$C_2\times C_6$
Normalizer:$C_2\times C_3^3:C_6^2$
Complements:$C_2^2$ $C_2^2$
Minimal over-subgroups:$C_3^3:C_6^2$
Maximal under-subgroups:$C_3^2\times \He_3$$C_3^3:C_6$$C_3^3:C_6$$C_3^2\wr C_2$$C_3^3:C_6$

Other information

Number of subgroups in this autjugacy class$4$
Number of conjugacy classes in this autjugacy class$4$
Möbius function$2$
Projective image$C_2\times C_3^3:D_6$